4.2 正弦・余弦定理
著者:梅谷 武
語句:正弦定理, 余弦定理, 正弦余弦定理, スカラー三重積
四元数により球面三角形とその極三角形の性質を代数的に記述し、正弦定理, 余弦定理, 正弦余弦定理を証明する。
作成:2010-07-22
更新:2011-03-08
 以後、三次元単位球面S3上で考える。球面三角形A'B'C'は球面三角形ABCの極三角形であるものとし、各頂点の位置ベクトルをα = [OA], β = [OB], γ = [OC], α' = [OA'], β' = [OB'], γ' = [OC']とおく。

命題4.2.1.3 極三角形の基本式

(2)
β
α
= cos c + sin c γ'
(3)
α
γ
= cos b + sin b β'
(4)
γ
β
= cos a + sin a α'
(5)
β'
α'
= cos c' + sin c' γ
(6)
α'
γ'
= cos b' + sin b' β
(7)
γ'
β'
= cos a' + sin a' α
 球面三角形の基本式から
β
α
α
γ
= K
γ
β
これに極三角形の基本式を代入する。
(8)
(cos c + sin c γ')(cos b + sin b β') = cos a - sin a α'
左辺を展開する。
(9)
cos c cos b + sin c cos b γ' + cos c sin b β' + sin c sin b γ' ∙ β'
一般にベルソルα, βについて
α ∙ β = -
β
α
が成り立つことから、
γ' ∙ β' = -
β'
γ'
= cos(π - a') - sin(π - a') α = cos A - sin A α
これを(9)に代入して整理する。
cos c cos b + sin c sin b cos A + sin c cos b γ' + cos c sin b β' - sin c sin b sin A α
(8)の右辺のスカラー部と比較すると次式が得られる。
cos a = cos b cos c + sin b sin c cos A
同じくベクトル部と比較すると次式が得られる。
(10)
sin c sin b sin A α = sin a α' + cos c sin b β' + sin c cos b γ'
(10)αを左から作用させ、そのスカラーをとる。
sin c sin b sin A = sin a Sαα'
ここで、
α' = UV
γ
β
= - UVβγ
より
sin c sin b sin A = - SαVβγ
スカラー三重積の性質を使うと
sin A
sin a
= -
Sαβγ
sin a sin b sin c
同様にして次が得られる。
sin A
sin a
=
sin B
sin b
=
sin C
sin c
= -
Sαβγ
sin a sin b sin c
(10)γ'を右から作用させ、そのスカラーをとる。
sin a Sα'γ' = sin c cos b - cos c sin b Sβ'γ'
これに
Sα'γ' = - cos b' = - cos (π - B) = cos B
Sβ'γ' = - cos a' = - cos (π - A) = cos A
を代入すると次が得られる。
sin a cos B = sin c cos b - cos c sin b cos A

補題4.2.2.2 スカラー三重積

(11)
Sαβγ = SVαβ∙γ = SαVβγ
(12)
Sαβγ = Sβγα = Sγαβ

証明

          Sαβγ
=
S(αβ)γ
=
S(Sαβ + Vαβ)γ
=
S(Sαβ)γ + S(Vαβ)γ
=
SVαβ∙γ
Sαβγ
=
Sα(βγ)
=
Sα(Sβγ + Vβγ)
=
SαSβγ + SαVβγ
=
SαVβγ
Sαβγ
=
SαVβγ
=
- SαVγβ
=
- Sαγβ
=
- SVαγβ
=
Sγαβ
=
Sβγα
 スカラー三重積は三つのベクトルが張る平行六面体の体積の符号を反転したものである。

命題4.2.2.5 球面三角形の正弦定理

(13)
sin a
sin A
=
sin b
sin B
=
sin c
sin C

命題4.2.2.6 球面三角形の余弦定理

(14)
cos a = cos b cos c + sin b sin c cos A
(15)
cos b = cos c cos a + sin c sin a cos B
(16)
cos c = cos a cos b + sin a sin b cos C

命題4.2.2.7 球面三角形の正弦余弦定理

(17)
sin a cos B = cos b sin c - sin b cos c cos A
(18)
sin b cos C = cos c sin a - sin c cos a cos B
(19)
sin c cos A = cos a sin b - sin a cos b cos C
Published by SANENSYA Co.,Ltd.